DUNAWITHANINES A AND B, THE FIRST WITHANOLIDE GLYCOSIDES FROM DUNALIA AUSTRALIS*

GÜNTER ADAM, NGUÊN QUYÊT CHIÊN† and NGUYÊN HÛU KHÔI‡

Institute of Plant Biochemistry, Academy of Sciences of the GDR, Halle/Saale, German Democratic Republic

(Received 11 October 1983)

Key Word Index—Dunalia australis, Solanaceae, withanolide glycosides, steroidal lactones, dunawithanines A and B

Abstract—Withanolide D, 7β -acetoxy-withanolide D and two new withanolide glycosides, named dunawithanines A and B, were isolated from *Dunalia australis* From physical data and chemical transformations, the structures of the new compounds were determined as (20R, 22R)-O(3)-[2',3'-di-O- $(\beta$ -D-glucopyranosyl)- β -D-glucopyranosyl]- 3β ,20-dihydroxy- 1α -acetoxy-witha-5,24-dienolide and the corresponding O(3)- $[\beta$ -D-glucopyranosyl] compound, representing the first withanolide glycosides found in the plant kingdom

INTRODUCTION

Recently we reported briefly on dunawithanines A and B from *Dunalia australis* (Griseb) Sleum [also known as *Acnistus australis* (Griseb) Griseb.] which represent the first withanolide glycosides found in the plant kingdom [1] In this paper, detailed results on the isolation and structures of both constituents are given Furthermore, besides the free withanolides which were obtained previously [2, 3] from this plant, withanolide D and 7β -acetoxywithanolide D were isolated

RESULTS AND DISCUSSION

Methanolic extraction of dried sprouts followed by repeated column chromatography on silica gel and alumina gave, besides withanolide D (0.003%) and 7β -acetoxy-withanolide D (0.004%), the crystalline glycosides dunawithanines A (4) and B (10) in 0.18 and 0.045% yield, respectively Acid hydrolysis of 4 or 10 (1 N methanolic HCl, 5 hr reflux) afforded in both cases D-glucose and an aglycone which was shown to be (20R, 22R)-1 α , 3β , 20-trihydroxy-witha-5, 24-dienolide (1) by spectral data and chemical transformations [1] as well as by X-ray analysis of its monohydrate [4] Independently 1 was obtained as a free withanolide (deacetyl physalolactone B) from Withania somnifera chemotype III [5]

The composition $C_{48}H_{74}O_{20}$ 3H₂O for dunawithanine A (4) was derived from elemental analysis Its FDMS [6] with peaks at m/z 1009 [M + Na]⁺ and 516 [M + 2Na]²⁺ confirmed the MW of 986 Peaks due to the stepwise loss of three glucose units at m/z 847 [1009 – glucosyl + H]⁺, 685 [847 – glycosyl + H]⁺ and 524 [685 – glucosyl]⁺ indicated the presence of a triglucoside The typical

withanolide signals in the 100 MHz ¹H NMR spectrum (Table 1) corresponded well with those of the 1α-monoacetyl withanolide 3 (also isolated independently as physalolactone B [7]) prepared via mild alkaline hydrolysis of the diacetate 2 Alkaline hydrolysis of 4 with 0 1 N methanolic NaOMe (72 hr at 20°) gave deacetyl dunawithanine A (5), which lacked ¹H NMR acetyl signals

Selective cleavage of the glucosidic linkage in 4 was achieved by oxidative Smith degradation [8], which gave 30% of the crystalline monoglucoside 7 The typical withanolide ¹H NMR signals of 7 corresponded with those of the triglucoside 4 (Table 1) A doublet at $\delta 4$ 33 (J = 7 Hz) for the anomeric sugar proton [9, 10] indicated the β -glucosidic linkage of the remaining glucose at C-3 Alkaline hydrolysis of 7 led to deacetyl monoglucoside 8 A second Smith degradation starting from 7 yielded 33% of the monoacetate 3 which proved unequivocally the 1aposition of the acetyl function as well as the 3β -position of the sugar side chain moiety in 4 Partial acid hydrolysis of 4 (1 N methanolic HCl, 1 hr reflux) yielded aglycone 1 (54%), 1 α -monoacetate 3 (67%), the monoglucoside 7 (27%) and the deacetyl monoglucoside 8 (66%), which were isolated by column chromatography on silica gel

For detection of the sugar sequence, the glycoside 4 was methylated with MeI-BaO-Ba(OH)₂ in DMFA following the procedure of Kuhn et al [11] Upon column

$$R^{20}$$
 H^{1}
 H^{0}

	R'	R ² _	
i	Н	Н	
2	Ac	Ac	
3	н	Ac	

^{*}Part of the thesis of N Q Chien, Academy of Sciences of the G D R, 1980

[†]Present address National Research Centre of the SRV, Institute of Chemistry, Nghia do-Tu Liem, Hanoi, SRV

[‡]Present address National Research Centre of the SRV, Branch Dalat, Bui Thi Yuan, Dalat, SRV

Table 1	¹ H NMR spectral data of dunawithanines A (4) and B (10) and derivatives (100 MHz, CD ₃ OD,
	HMDS as internal standard)

Compound	3*	4	5	6	7	10
H-1	5 05 br s	5 00 br s	†	4 92 br s	497 br s	497 br s
H-3	3 80 m	†	†	†	†	+
H-6	5 55 d (4)‡	5 55 d (5)	5 50 d (4)	5 37 d (4)	5 57 d (4)	5 47 d (4)
H-22	4 22 dd (12, 4)	4 18 dd (12,4)	†	4 16 dd (12,4)	4 17 dd (12,4)	4 17 dd (12,4)
3H-18	0 83 s	0 83 s	0 82 s	083 <i>s</i>	081 s	080s
3H-19	1 05 s	1 06 s	096s	1 02 s	1 05 s	1 03 s
3H-21	1 25 s	1 22 s	1 22 s	1 22 s	1 20 s	1 19 s
3H-27, 28	193s	1 82 s	1 80 s	1 78 s	180s	1 80 s
		1 84 s	1 84 s	1 87 s	1 93 s	192s
–OAc	200s	200s	_	1 94 s	1 97 s	197s
Anomeric	_	†	†	4 33 d (7)	4 33 d (7)	4 44 d (7)
glucose	_	†	t	4 66 d (7)	- ` ′	4 57 d (7)
protons	_	†	†	4 78 d (7)	_	

*In CDCl₃

†Could not be identified

‡J (Hz)

chromatography of the reaction product on silica gel, 28% deca-O-methyl dunawithanine A (6) and 22% of the lactone ring-opened dodeca-O-methyl derivative (9) were obtained

Whilst the mass spectrum of 6 upon positive ionization exhibited no molecular ion peak, under conditions of

negative ionization a molecular ion at m/z 1127 [M+1] was indicated besides characteristic sugar fragments at m/z 643 [decamethyltriglucosyl fragment including O(3)] and m/z 407 [643 — tetramethylglucosyl — OH] Compared to 6, compound 9 upon negative ionization

Compared to 6, compound 9 upon negative ionization showed the molecular ion peak at m/z 1171 $[M-1]^-$

besides typical fragments of the methylated sugar part at m/z 643 and 407 (see formula 9) Under positive ionization, the loss of m/z 171 instead of the characteristic fragment at m/z 126 of 20-hydroxylated withanolides [2] suggested hydrolysis of the δ -lactone ring with simultaneous methylation Such a structural feature was also confirmed by IR absorption at 1725 (α,β -unsaturated ester) and 1730 cm⁻¹ (OAc), as well as a UV maximum at 228 nm (log $\varepsilon = 358$) (trisubstituted α,β -unsaturated ester), which is optically inactive unlike the α,β -unsaturated δ -lactone of withanolides [1, 2]

Acid hydrolysis of 6 gave, besides the aglycone 1, two methylated sugars identified as 2,3,4,6-tetra-O-methyl-α-D-glucose (24%) and 4,6-di-O-methyl-α-D-glucose (27%) by direct comparison with authentic specimens

After these results, only the configuration of the three glucosidic linkages in 4 remained open All three were found to be β by application of Klyne's rule [12] ([M]_D calculated -11° , found 0°) Also the three doublets at $\delta 4$ 33, 4 66 and 4 78, each with J=7 Hz, in the ¹H NMR spectrum of 6 indicated the ⁴C₁-conformation of the glucose [9, 10]

The structure of the minor glucoside dunawithanine B (10) is closely related to 4 Its FDMS with peaks at m/z 847 $[M+Na]^+$ and 435 $[M+2Na]^2+$ as well as fragments at m/z 685 $[M+Na-glucosyl+H]^+$ and 524 $[M+Na-2glucosyl+2H]^+$ indicated an MW of 824 and the diglucosidic nature of the compound The agreement of important signals in the ¹H NMR spectrum with those of 4 and 3 (Table 1) suggested an identical substitution pattern for the withanolide part Two doublets at $\delta 4$ 44 and 457, each with J=7 Hz, for the anomeric sugar protons and application of Klyne's rule ($[M]_D$ calculated $+52^\circ$, found $+103^\circ$) revealed again the β -configuration of the two glucosidic linkages. As with 4, alkaline hydrolysis yielded deacetyl dunawithanine B (11)

On the basis of the above results, dunawithanines A and B were established as (20R,22R)-O(3)-[2',3'-di-O- $(\beta$ -D-glucopyranosyl)- β -D-glucopyranosyl]- 3β , 20-dihydroxy- 1α -acetoxy-witha-5,24-dienolide (4) and the corresponding (3)- $[\beta$ -D-glucopyranosyl- $(1' \rightarrow x)$ - β -D-glucopyranosyl] compound (10), respectively, representing the first naturally-occurring withanolide glycosides Very recently, Kirson et al [13] reported a third member named physalolactone B 3-O- β -D-glucopyranoside from Physalis peruviana which is structurally identical to our monoglucoside 7 prepared from 1

EXPERIMENTAL

Mps are corrected Specific rotations in CHCl₃ unless otherwise stated IR spectra were determined in nujol UV and ORD were taken in MeOH Low resolution MS electron attachment mass spectrograph of the Research Institute M von Ardenne, Dresden (positive and negative ionization) High resolution EIMS Joel instrument MS D 100 FDMS Varian instrument MAT 731 CC silica gel Merck grade II, unless otherwise stated

Isolation Dried and powdered sprouts (18 kg) of Dunalia australis (grown in a greenhouse) were extracted successively with CHCl₃ and MeOH (each 151) The MeOH soln was concd to 11 under red pres, diluted with $\rm H_2O$ and extracted exhaustively with $\rm C_6H_6-Et_2O$ (11) followed by CHCl₃-MeOH (91) The residue of the latter extract (1g) was chromatographed over silicagel (Merck, grade III) The progress of the separation was followed by TLC on silicagel (CHCl₃-MeOH- $\rm H_2O$, 70 203)

Elution with CHCl₃-MeOH-H₂O (100 16 1 6) gave 0 8 g (0 045%) dunawithanine B (10) Crystals (MeOH-Et₂O), mp 192-195° dec, $[\alpha]_D^{55}$ + 12 5° (MeOH, c 0 5), R_f 0 46 FDMS (emitter current 28-29 mA) m/z (rel int) 847 [M + Na] + (100), 721 [847 - C₇H₁₀O₂] + (14), 685 [847 - glucosyl + H] + (2 3), 523 [685 - glucosyl + H] + (3 2), 435 [M + 2Na]²⁺ (11) IR ν_{max} cm⁻¹ 1135 (α,β-unsaturated δ-lactone), 1240 (OAc), 1700 (α,β-unsaturated δ-lactone), 1730 (OAc), 3400 (OH) UV λ_{max} nm (log ε) 228 (3 86) ORD [Θ]₂₆₄ + 1810°, [Θ]₂₅₀ 0°, [Θ]₂₃₂ - 1360° (a = +31 7) For ¹H NMR data see Table 1

Further elution with CHCl₃–MeOH–H₂O (100 16 1 6) gave 3 2 g (0 18%) dunawithanine A (4) Crystals (MeOH–Me₂CO), mp 208–213° dec, $[\alpha]_{6}^{25}$ 0° (MeOH, c 0 4), R_f 0 35, C₄₈H₇₄O₂₀ 3H₂O (Found C, 56 24, H, 7 87 Calc C, 56 57, H, 7 76%) FDMS (emitter current 28–30 mA) m/z (rel int) 1009 $[M+Na]^+$ (100), 847 $[1009-glucosyl+H]^+$ (2 4), 685 $[847-glucosyl+H]^+$ (1 8), 524 $[685-glucosyl]^+$ (2 4), 516 $[M+2Na]^{2+}$ (2 0) $[M+max cm^{-1}]$ 1250 (OAc), 1630 (sh), 1700 (α, β-unsaturated δ-lactone), 1730 (OAc), 3400 (OH) [M+max] 0°, [M+m

The residue of the C_6H_6 –Et₂O extract (15 g) was chromatographed over alumina (Merck, grade II) to give upon elution with C_6H_6 –Me₂CO (9 1) 60 mg (0 003 %) with anolide D Crystals (CHCl₃–EtOAc), mp 241–249°, $[\alpha]_D^{25}$ + 145° (c 0 2) identical to an authentic specimen

Further elution with C_6H_6 –Me₂CO (9 1) gave 70 mg (0 004%) 7β -acetoxy-withanolide D Fine crystals (n-hexane–Me₂CO), mp 184–186°, $[\alpha]_0^{26} + 126^\circ$ (c 0 3), identical to an authentic specimen Further elution with C.H.–Me₂CO (4.1) yielded (20R 22R).

Further elution with C_6H_6 – Me_2CO (4 1) yielded (20R,22R)- 4β ,7 β ,20-trihydroxy-1-oxo-witha-2,5,24-trienolide and (20R, 22R)- 4β ,7 β ,20-trihydroxy-1-oxo- 5β ,6 β -oxido-witha-2,24-dienolide, already earlier isolated from *Dunalia australis* [2, 3]

Actd hydrolysis of 4 or 10 4 or 10 (300 mg) were refluxed for 5 hr with 1 N methanolic HCl (50 ml) The soln was concd under red pres and diluted with 50 ml $\rm H_2O$ The collected ppt was chromatographed over silica gel to give upon elution with CHCl₃-MeOH (97 3) 100 mg (67%) (20R,22R)-1 α ,3 β -20-trihydroxy-witha-5,24-dienolide (1) Plates (Me₂CO), mp 281-284° [α] $_{\rm D}^{25}$ + 22 2° (c 0 5), lit [5] mp 273°, [α] $_{\rm D}$ + 19 8°

For detection of the sugars, the aq soln of the hydrolysis was refluxed for 3 hr, neutralized with Dowex 1 and concd under red pres Upon PC [Schleicher & Schull 2043b, n-BuOH-HOAc-H₂O (4 1 5) and H₂O-saturated C₆H₅OH, detection with aniline-phthalic acid], only glucose of R_f 0 17 and 0 50, respectively, was detected

Diacetate 2 Fine crystals (n-hexane), mp 135°, $[\alpha]_D^{25} + 30^\circ$ (c 0 4), lt [5] mp 85–86° (EtOAc), $[\alpha]_D + 176^\circ$

O(1)-Monoacetate 3 Compound 2 (30 mg) in MeOH (50 ml) was stirred with Na₂CO₃ for 2 hr at room temp Evapn and chromatographic purification of the residue over silica gel yielded upon elution with *n*-hexane–Me₂CO (4 1) 15 mg (50%) 3 Plates (*n*-hexane–Me₂CO), mp 239–240°, [α]_D²⁵ + 35 6° (*c* 0 36) MS (positive ionization), 10–16 eV, m/z (rel int) 440 [M – MeCOOH]⁺ (23), 422 [422 – H₂O]⁺ (23), 404 [422 – H₂O]⁺ (7), 375 [M – 125]⁺ (15), 357 [375 – H₂O]⁺ (20), 315 [375 – MeCOOH]⁺ (69), 297 [315 – H₂O]⁺ (56), 279 [297 – H₂O]⁺ (27), 169 (64), 126 (100), 125 (78) IR ν_{max} cm⁻¹ 1135, 1702 (α, β-unsaturated δ-lactone), 1250, 1730 (OAc), 3450 (OH) UV λ _{max} nm (log ε) 229 (3 80) ORD [Θ]₂₆₅ + 3750°, [Θ]₂₅₀ 0°, [Θ]₂₃₅ –770° (a = +35 2)

Deacetyl dunawithanine A (5) Compound 4 (200 mg) in 30 ml 0 1 N abs methanolic NaOMe was left for 72 hr at room temp Upon neutralization with dil HOAc the soln was evapd under red pres, the residue dissolved in 20 ml n-BuOH and washed 3 × with H_2O Evapn and crystallization gave 130 mg (65%) 5

2296 G ADAM et al

Crystals (MeOH–Et₂O), mp 216° dec, $[\alpha]_D^{24} + 1.3^\circ$ (c 0.78) IR ν_{max} cm⁻¹ 1135, 1690 (α,β -unsaturated δ -lactone), 3400 (OH) UV λ_{max} nm (log ε) 228 (3.93) ORD $[\Theta]_{265} + 1760^\circ$, $[\Theta]_{250}$ 0°, $[\Theta]_{235} - 1820^\circ$ (a = +35.8)

Deacetyl dunawithanine B (11) From 10 as described before (50%) Crystals (MeOH-EtOAc), mp 192° dec, $[\alpha]_D^{24} + 34^\circ$ (MeOH, c 0 29) IR $\nu_{\rm max}$ cm⁻¹ 1135, 1690 (α,β-unsaturated δ-lactone), 3400 (OH) UV $\lambda_{\rm max}$ nm (log ε) 229 (3 73) ORD $[\Theta]_{266} + 1280^\circ$, $[\Theta]_{252}$ 0°, $[\Theta]_{235} - 1280^\circ$ (a = +256)

Oxidative Smith degradation [8] of dunawithanine A (4) to 7 Compound 4 (500 g) in MeOH (100 ml) was stirred with NaIO₄ (15 g) in H₂O (15 ml) for 16 hr at 4° After standing for 12 hr at room temp and filtration, the soln was concd under red pres and n-BuOH (100 ml) was added The organic phase was washed with H₂O, evapd, and the residue obtained dissolved in MeOH (100 ml) After addition of NaBH₄ (1 g), the soln was stirred for 1 hr at room temp and neutralized with 5% HOAc in MeOH 1 N methanolic HCl (25 ml) was added and the soln left for 24 hr at room temp Evapn under red pres, addition of 100 ml n-BuOH, repeated washing with H2O, and evapn gave a residue which was chromatographed on 8 g silica gel Upon elution with CHCl₃-MeOH (49 4), 100 mg (30%) monoglucoside 7 was obtained Crystals (MeOH-H₂O), mp 172-175° dec, [α]_D²⁵ + 15 2° (MeOH, c 0 4) IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 1135, 1690 (α, β) unsaturated δ -lactone), 1255, 1730 (OAc), 3450 (OH) UV λ_{max} nm (log ϵ) 230 (3.87) ORD $[\Theta]_{272}$ + 725°, $[\Theta]_{240}$ -3015° (a = +373), lit [13] amorphous, $[\alpha]_{D}$ +37° (pyridine)

Oxidative Smith degradation of monoglucoside 7 to 3 From 7 (60 mg) as described before (CHCl₃ instead of n-BuOH was used for the extraction after acid hydrolysis) Elution of the silica gel column with n-hexane-Me₂CO (8 3) gave 15 mg (33%) 3, mp 236-239°, identical in every aspect to O(1)-monoacetate 3 prepared from 1 via diacetate 2

Deacetyl monoglucoside **8** Compound **10** (10 mg) in 0 1 N methanolic NaOMe (2 ml) was left for 48 hr at room temp After neutralization with dil HOAc, evapn under red pres, and addition of CHCl₃-MeOH (9 1), the soln was dried over Na₂SO₄ and evapd to give 5 mg (50%) **8** Crystals (EtOAc), mp 178–182°, $\lceil \alpha \rceil_D^{26} + 26$ 1° (MeOH, c 0 3) MS (positive ionization), 10–16 eV, m/z (rel int) 584 $\lceil M-2H_2O \rceil^+$ (24), 440 $\lceil M-glucose \rceil^+$ (34), 422 $\lceil 440-H_2O \rceil^+$ (100), 404 $\lceil 422-H_2O \rceil^+$ (74), 333 $\lceil M-glucose -125 \rceil^+$ (33), 315 $\lceil 333-H_2O \rceil^+$ (59), 297 $\lceil 315-H_2O \rceil^+$ (61) IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 1135, 1700 (α,β -unsaturated δ -lactone) 3400 (OH) UV λ_{max} nm (log ϵ) 229 (3 86)

Partial acid hydrolysis of 4 Compound 4 (600 mg) was refluxed with 1 N methanolic HCl (100 ml) for 1 hr The soln was evapd under red pres, the residue was dissolved in n-BuOH (100 ml), washed with H₂O, evapd under red pres, and the residue obtained (300 mg) chromatographed over silica gel (15 mg) Elution with CHCl₃-MeOH gradients gave 20 mg O(1)-monoacetate 3 (49 1), 150 mg withanolide 1 (97 3), 11 mg monoglucoside 7 (9 1) and 25 mg deacetyl monoglucoside 8 (4 1), identical in every aspect to the otherwise prepared specimen

Methylation of dunawithanine A (4) to 6 and 9 Compound 4 (600 mg) was shaken in DMF (12 ml) with BaO (2 4 g), Ba(OH)₂ 8H₂O (48 mg) and MeI (2 6 ml) [11] for 24 hr, and after addition of further MeI (1 ml) and BaO (100 mg), again for 24 hr at room temp. The soln was diluted with CHCl₃ (200 ml) and after filtration, extraction with H₂O and aq Na₂S₂O₃ evapd CC of the residue (626 mg) over silica gel (Woelm, 30 g) gave upon elution with n-hexane—CHCl₃ (1 4) 200 mg (28 %) dodeca-O-methyl derivative 9 Scales (n-hexane—CHCl₃), mp 76–80°, [α] $_D^{5}$ + 3 5° (c 0 5) MS (negative ionization), 10–16 eV, m/z (rel int.) 1171 [M-1] (48), 999 [M-1-171] (26), 643 (deca-

Elution with CHCl₃ gave 150 mg (22%) deca-*O*-methyldunawithanine A (6), scales (*n*-hexane–CHCl₃), mp 92–95°, [α] $_{1}^{26}$ + 51° (*c* 04) MS (negative ionization), 10–16 eV, m/z (rel int) 1127 [M+1] $_{1}^{-}$ (12), 1108 [M-H₂O] $_{1}^{-}$ (53), 1048 [1108 – HOAc] $_{1}^{-}$ (6), 889 [1108 – 219] $_{1}^{-}$ (7), 643 (decamethyl triglucosyl fragment) (16), 481 (27), 463 [481 – H₂O] $_{1}^{-}$ (55), 421 [481 – HOAc] $_{1}^{-}$ (33), 407 [643-tetramethyl glucosyl – OH] $_{1}^{-}$ (76) MS (positive ionization), 10–16 eV, m/z (rel int) 499 [M – 627] $_{1}^{+}$ (5), 485 (46), 465 [M – 643 – H₂O] $_{1}^{+}$ (56), 439 [499 – HOAc] $_{1}^{+}$ (36), 421 [439 – H₂O] $_{1}^{+}$ (49), 405 [465 – HOAc] $_{1}^{+}$ (46), 391 (81), 357 [M – 643 – 126] $_{1}^{+}$ (43), 297 [357 – HOAc] $_{1}^{+}$ (44), 219 (tetramethyl glucosyl fragment) (85), 187 [219 – McOH] $_{1}^{+}$ (100) IR v_{max} cm $_{1}^{-}$ 1240, 1730 (OAc), 1700 (α, β-unsaturated δ-lactone), 3500 (OH) UV v_{max} nm (log ε) 228 (3 69) ORD [Θ]₂₆₆ + 1940°, [Θ]₂₅₀ 0°, [Θ]₂₃₃ – 2200° (a = +41 4) Acid hydrolysis of 6 Compound 6 (200 mg) was refluxed with 1 N methanolic HCl (50 ml) for 5 hr Upon evapn under red pres and dilution with H₂O (50 ml), the ppt was crystallized to give 1 The aq filtrate was refluxed for 3 hr and extracted 5× with

1 N methanolic HCl (50 ml) for 5 hr Upon evapn under red pres and dilution with H₂O (50 ml), the ppt was crystallized to give 1 The aq filtrate was refluxed for 3 hr and extracted $5 \times$ with CHCl₃. The aq solin was neutralized with Dowex 1 and evapd CC of the residue of the CHCl₃ extract over 2 g silica gel gave upon elution with C₆H₆-Me₂CO (7 3) 20 mg (24%) 2,3,4,6-tetra-O-methyl- α -D-glucose Needles (n-hexane), mp 88–91°, $[\alpha]_D^{5} + 87.5 \rightarrow 83.0^{\circ}$ (H₂O, c 0 2), identical in every aspect to an authentic [14] sample CC of the residue of the aq solin over 2 g silica gel gave upon elution with CHCl₃-MeOH (47 3) 10 mg (27%) 4,6-di-O-methyl- α -D-glucose Needles (MeOH-CHCl₃), mp 165–169°, $[\alpha]_D^{25} + 76.9 \rightarrow 62.9^{\circ}$ (H₂O, c 0.14), identical in every aspect to an authentic sample prepared from α -tomatine [15]

Acknowledgements—We are indebted to Prof H R Schulten, Wiesbaden, for the FD-mass spectra and to Dr W Schade, Jena, for the high-resolution mass spectra We thank Prof D Lavie, Rehovot, for the authentic samples of withanolide D, and 7β -acetoxy-withanolide D, and Dr H Ripperger, Halle, for 2,3,4,6-tetra-O-methyl-D-glucose

REFERENCES

- 1 Adam, G, Chien, N Q and Khoi, N H (1981) Naturwissenschaften 67, 425
- 2 Adam, G and Hesse, M (1972) Tetrahedron 28, 3527
- 3 Kirson, I, Lavie, D, Albonico, S M and Juliani, H R (1970) Tetrahedron 26, 5063
- 4 Reck, G, Khoi, N H and Adam, G (1982) Cryst Struct Commun 11, 355
- 5 Vande Velde, V and Lavie, D (1981) Phytochemistry 20, 1359
- 6 For the method see Schulten, H-R, Komon, T and Kawasaki, T (1977) Tetrahedron 33, 2595
- 7 Ray, A B, Alı, A, Sahaı, M, Schiff P L, Jr, Knapp, J E and Slatkin, D J (1981) Chem Ind 62
- 8 Lewis, B A, Cyr, M J St and Smith, F (1968) J Org Chem 33, 3139
- 9 Heguchi, R, Miyahara, K and Kawasaki, T (1972) Chem Pharm Bull (Tokyo) 20, 1935

- 10 Coxon, B (1972) Adv Carbohydr Chem Biochem 27, 7
- 11 Kuhn, R, Egge, H, Brossmer, G, Gaube, A, Klesse, P, Lochinger, W, Rohm, E, Trischmann, H and Tschampel, D (1960) Angew Chem 72, 805
- 12 Klyne, W (1950) Biochem J 47, 41

- 13 Kirson, I, Glotter, E, Ray, A B, Ali, A, Gottlieb, H E and Sahai, M (1983) J Chem Research (S) 120
- 14 Ripperger, H and Seifert, K (1975) Tetrahedron 31, 1561
- 15 Kuhn, R, Low, I and Trischmann, H (1957) Chem Ber 90,